You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session.
An index of recommendation algorithms that are based on Graph Neural Networks. (TORS)
Notifications You must be signed in to change notification settings
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Go to fileAn index of recommendation algorithms that are based on Graph Neural Networks. Our survey A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions is accepted by ACM Transactions on Recommender Systems. A preprint is available on arxiv: link Please cite our survey paper if this index is helpful.
@article, author=, journal=, year= >
Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X., & Li, Y. (2022). A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions. ACM Transactions on Recommender Systems (TORS).
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
GCMC | Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263. | arxiv | 2017 | Python |
Pin-Sage | Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 974-983). | KDD | 2018 | Python |
NGCF | Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019, July). Neural graph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 165-174). | SIGIR | 2019 | Python |
LightGCN | He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval (pp. 639-648). | SIGIR | 2020 | Python |
NIA-GCN | Sun, J., Zhang, Y., Guo, W., Guo, H., Tang, R., He, X., . & Coates, M. (2020, July). Neighbor interaction aware graph convolution networks for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1289-1298). | SIGIR | 2020 | NA |
DGCF | Wang, X., Jin, H., Zhang, A., He, X., Xu, T., & Chua, T. S. (2020, July). Disentangled graph collaborative filtering. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1001-1010). | SIGIR | 2020 | Python |
IMP-GCN | Liu, F., Cheng, Z., Zhu, L., Gao, Z., & Nie, L. (2021, April). Interest-aware message-passing gcn for recommendation. In Proceedings of the Web Conference 2021 (pp. 1296-1305). | WWW | 2021 | Python |
SGL | Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., & Xie, X. (2021, July). Self-supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 726-735). | SIGIR | 2021 | Python |
LT-OCF | Choi, J., Jeon, J., & Park, N. (2021). LT-OCF: Learnable-Time ODE-based Collaborative Filtering. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (pp. 251-260). | CIKM | 2021 | Python |
HMLET | Kong, T., Kim, T., Jeon, J., Choi, J., Lee, Y-C.,Park, N., & Kim, S-W. (2022). Linear, or Non-Linear, That is the Question! In Proceedings of the 15th ACM International Web Search and Data Mining Conference (pp. 517-525). | WSDM | 2022 | Python |
HS-GCN | Liu, H., Wei, Y., Yin, J., & Nie, L. (2022). HS-GCN: Hamming Spatial Graph Convolutional Networks for Recommendation. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2022 | Python |
LGCN | Yu, W., Zhang, Z., & Qin, Z. (2022). Low-pass Graph Convolutional Network for Recommendation. | AAAI | 2022 | Python |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
Fi-GNN | Li, Z., Cui, Z., Wu, S., Zhang, X., & Wang, L. (2019, November). Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 539-548). | CIKM | 2019 | Python |
PUP | Zheng, Y., Gao, C., He, X., Li, Y., & Jin, D. (2020, April). Price-aware recommendation with graph convolutional networks. In 2020 IEEE 36th International Conference on Data Engineering (ICDE) (pp. 133-144). IEEE. | ICDE | 2020 | Python |
A2-GCN | Liu, F., Cheng, Z., Zhu, L., Liu, C., & Nie, L. (2020). A2-GCN: An attribute-aware attentive GCN model for recommendation. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2020 | NA |
L0-SIGN | Su, Y., Zhang, R., Erfani, S., & Xu, Z. (2021, May). Detecting Beneficial Feature Interactions for Recommender Systems. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI). | AAAI | 2021 | Python |
DG-ENN | Guo, W., Su, R., Tan, R., Guo, H., Zhang, Y., Liu, Z., . & He, X. (2021). Dual Graph enhanced Embedding Neural Network for CTRPrediction. arXiv preprint arXiv:2106.00314. | KDD | 2021 | NA |
SHCF | Li, C., Hu, L., Shi, C., Song, G., & Lu, Y. (2021). Sequence-aware Heterogeneous Graph Neural Collaborative Filtering. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 64-72). Society for Industrial and Applied Mathematics. | SDM | 2021 | Python |
GCM | Wu, J., He, X., Wang, X., Wang, Q., Chen, W., Lian, J., & Xie, X. (2020). Graph Convolution Machine for Context-aware Recommender System. arXiv preprint arXiv:2001.11402. | Frontiers of Computer Science | 2021 | Python |
TGIN | Jiang, W., Jiao, Y., Wang, Q., Liang, C., Guo, L., Zhang, Y., . & Zhu, Y. (2022, February). Triangle Graph Interest Network for Click-through Rate Prediction. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (pp. 401-409). | WSDM | 2022 | Python |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
IRGPR | Liu, W., Liu, Q., Tang, R., Chen, J., He, X., & Heng, P. A. (2020, October). Personalized Re-ranking with Item Relationships for E-commerce. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 925-934). | CIKM | 2020 | NA |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
DiffNet | Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., & Wang, M. (2019, July). A neural influence diffusion model for social recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 235-244). | SIGIR | 2019 | Python |
GraphRec | Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The World Wide Web Conference (pp. 417-426). | WWW | 2019 | Python |
DANSER | Wu, Q., Zhang, H., Gao, X., He, P., Weng, P., Gao, H., & Chen, G. (2019, May). Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems. In The World Wide Web Conference (pp. 2091-2102). | WWW | 2019 | Python |
DGRec | Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., & Tang, J. (2019, January). Session-based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM international conference on web search and data mining (pp. 555-563). | WSDM | 2019 | Python |
HGP | Kim, K. M., Kwak, D., Kwak, H., Park, Y. J., Sim, S., Cho, J. H., . & Ha, J. W. (2019). Tripartite heterogeneous graph propagation for large-scale social recommendation. arXiv preprint arXiv:1908.02569. | RecSys | 2019 | NA |
DiffNet++ | Wu, L., Li, J., Sun, P., Hong, R., Ge, Y., & Wang, M. (2020). Diffnet++: A neural influence and interest diffusion network for social recommendation. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2020 | Python |
MHCN | Yu, J., Yin, H., Li, J., Wang, Q., Hung, N. Q. V., & Zhang, X. (2021, April). Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation. In Proceedings of the Web Conference 2021 (pp. 413-424). | WWW | 2021 | Python |
SEPT | Yu, J., Yin, H., Gao, M., Xia, X., Zhang, X., & Hung, N. Q. V. (2021). Socially-Aware Self-Supervised Tri-Training for Recommendation. arXiv preprint arXiv:2106.03569. | KDD | 2021 | Python |
GBGCN | Zhang, J., Gao, C., Jin, D., & Li, Y. (2021, April). Group-Buying Recommendation for Social E-Commerce. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1536-1547). IEEE. | ICDE | 2021 | Python |
KCGN | Huang, C., Xu, H., Xu, Y., Dai, P., Xia, L., Lu, M., . & Ye, Y. (2021, January). Knowledge-aware coupled graph neural network for social recommendation. In AAAI Conference on Artificial Intelligence (AAAI). | AAAI | 2021 | Python |
DiffNetLG | Song, C., Wang, B., Jiang, Q., Zhang, Y., He, R., & Hou, Y. (2021, July). Social Recommendation with Implicit Social Influence. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1788-1792). | SIGIR | 2021 | NA |
RecoGCN | Xu, F., Lian, J., Han, Z., Li, Y., Xu, Y., & Xie, X. (2019, November). Relation-aware graph convolutional networks for agent-initiated social e-commerce recommendation. In Proceedings of the 28th ACM international conference on information and knowledge management (pp. 529-538). | CIKM | 2019 | Python |
GAT-NSR | Mu, N., Zha, D., He, Y., & Tang, Z. (2019, November). Graph attention networks for neural social recommendation. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1320-1327). IEEE. | ICTAI | 2019 | NA |
SR-HGNN | Xu, H., Huang, C., Xu, Y., Xia, L., Xing, H., & Yin, D. (2020, November). Global context enhanced social recommendation with hierarchical graph neural networks. In 2020 IEEE International Conference on Data Mining (ICDM) (pp. 701-710). IEEE. | ICDM | 2020 | Python |
TGRec | Bai, T., Zhang, Y., Wu, B., & Nie, J. Y. (2020, December). Temporal Graph Neural Networks for Social Recommendation. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 898-903). IEEE. | ICBD | 2020 | NA |
ESRF | Yu, J., Yin, H., Li, J., Gao, M., Huang, Z., & Cui, L. (2020). Enhance social recommendation with adversarial graph convolutional networks. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2020 | Python |
HOSR | Liu, Y., Liang, C., He, X., Peng, J., Zheng, Z., & Tang, J. (2020). Modelling high-order social relations for item recommendation. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2020 | NA |
GNN-SoR | Guo, Z., & Wang, H. (2020). A deep graph neural network-based mechanism for social recommendations. IEEE Transactions on Industrial Informatics, 17(4), 2776-2783. | TII | 2020 | NA |
ASR | Luo, D., Bian, Y., Zhang, X., & Huan, J. (2020). Attentive Social Recommendation: Towards User And Item Diversities. arXiv preprint arXiv:2011.04797. | arxiv | 2020 | Python |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
ISSR | Liu, F., Liu, W., Li, X., & Ye, Y. (2020). Inter-sequence Enhanced Framework for Personalized Sequential Recommendation. arXiv preprint arXiv:2004.12118. | AAAI | 2020 | NA |
MA-GNN | Ma, C., Ma, L., Zhang, Y., Sun, J., Liu, X., & Coates, M. (2020, April). Memory augmented graph neural networks for sequential recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5045-5052). | AAAI | 2020 | NA |
STP-UDGAT | Lim, N., Hooi, B., Ng, S. K., Wang, X., Goh, Y. L., Weng, R., & Varadarajan, J. (2020, October). STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention Network for Next POI Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 845-854). | CIKM | 2020 | NA |
GPR | Chang, B., Jang, G., Kim, S., & Kang, J. (2020, October). Learning graph-based geographical latent representation for point-of-interest recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 135-144). | CIKM | 2020 | NA |
GES-SASRec | Zhu, T., Sun, L., & Chen, G. (2021). Graph-based Embedding Smoothing for Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2021 | Python |
RetaGNN | Hsu, C., & Li, C. T. (2021, April). RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation. In Proceedings of the Web Conference 2021 (pp. 2968-2979). | WWW | 2021 | Python |
TGSRec | Fan, Z., Liu, Z., Zhang, J., Xiong, Y., Zheng, L., & Yu, P. S. (2021). Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer. arXiv preprint arXiv:2108.06625. | CIKM | 2021 | Python |
SGRec | Li, Y., Chen, T., Yin, H., & Huang, Z. (2021). Discovering Collaborative Signals for Next POI Recommendation with Iterative Seq2Graph Augmentation. arXiv preprint arXiv:2106.15814. | IJCAI | 2021 | NA |
SURGE | Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., . & Li, Y. (2021, July). Sequential Recommendation with Graph Neural Networks. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 378-387). | SIGIR | 2021 | Python |
GME | Xie, M., Yin, H., Xu, F., Wang, H., & Zhou, X. (2016, November). Graph-based metric embedding for next poi recommendation. In International Conference on Web Information Systems Engineering (pp. 207-222). Springer, Cham. | WISE | 2016 | NA |
Wang et al. | Wang, B., & Cai, W. (2020). Knowledge-enhanced graph neural networks for sequential recommendation. Information, 11(8), 388. | Information | 2020 | NA |
DGSR | Zhang, M., Wu, S., Yu, X., & Wang, L. (2021). Dynamic Graph Neural Networks for Sequential Recommendation. arXiv preprint arXiv:2104.07368. | arxiv | 2021 | NA |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
SR-GNN | Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., & Tan, T. (2019, July). Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 346-353). | AAAI | 2019 | Python |
GC-SAN | Xu, C., Zhao, P., Liu, Y., Sheng, V. S., Xu, J., Zhuang, F., . & Zhou, X. (2019, August). Graph Contextualized Self-Attention Network for Session-based Recommendation. In IJCAI (Vol. 19, pp. 3940-3946). | IJCAI | 2019 | Python |
TA-GNN | Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., & Tan, T. (2020, July). TAGNN: Target attentive graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1921-1924). | SIGIR | 2020 | Python |
MGNN-SPred | Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). | WWW | 2020 | Python |
LESSR | Chen, T., & Wong, R. C. W. (2020, August). Handling information loss of graph neural networks for session-based recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1172-1180). | KDD | 2020 | Python |
MKM-SR | Meng, W., Yang, D., & Xiao, Y. (2020, July). Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1091-1100). | SIGIR | 2020 | Python |
GAG | Qiu, R., Yin, H., Huang, Z., & Chen, T. (2020, July). Gag: Global attributed graph neural network for streaming session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 669-678). | SIGIR | 2020 | Python |
GCE-GNN | Wang, Z., Wei, W., Cong, G., Li, X. L., Mao, X. L., & Qiu, M. (2020, July). Global context enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 169-178). | SIGIR | 2020 | Python |
SGNN-HN | Pan, Z., Cai, F., Chen, W., Chen, H., & de Rijke, M. (2020, October). Star graph neural networks for session-based recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1195-1204). | CIKM | 2020 | NA |
DHCN | Xia, X., Yin, H., Yu, J., Wang, Q., Cui, L., & Zhang, X. (2020). Self-supervised hypergraph convolutional networks for session-based recommendation. arXiv preprint arXiv:2012.06852. | AAAI | 2021 | Python |
SHARE | Wang, J., Ding, K., Zhu, Z., & Caverlee, J. (2021). Session-based Recommendation with Hypergraph Attention Networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 82-90). Society for Industrial and Applied Mathematics. | SDM | 2021 | NA |
SERec | Chen, T., & Wong, R. C. W. (2021, March). An Efficient and Effective Framework for Session-based Social Recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 400-408). | WSDM | 2021 | Python |
COTREC | Xia, X., Yin, H., Yu, J., Shao, Y., & Cui, L. (2021). Self-Supervised Graph Co-Training for Session-based Recommendation. arXiv preprint arXiv:2108.10560. | CIKM | 2021 | Python |
DAT-MDI | Chen, C., Guo, J., & Song, B. (2021, July). Dual Attention Transfer in Session-based Recommendation with Multi-dimensional Integration. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 869-878). | SIGIR | 2021 | NA |
TASRec | Zhou, H., Tan, Q., Huang, X., Zhou, K., & Wang, X. (2021). Temporal Augmented Graph Neural Networks for Session-Based Recommendations. | SIGIR | 2021 | NA |
G 3 SR | Deng, Z. H., Wang, C. D., Huang, L., Lai, J. H., & Philip, S. Y. (2022). G^ 3SR: Global Graph Guided Session-Based Recommendation. IEEE Transactions on Neural Networks and Learning Systems. | TNNLS | 2022 | NA |
HG-GNN | Pang, Y., Wu, L., Shen, Q., Zhang, Y., Wei, Z., Xu, F., . & Pei, J. (2022, February). Heterogeneous global graph neural networks for personalized session-based recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (pp. 775-783). | WSDM | 2022 | Python |
CGL | Pan, Z., Cai, F., Chen, W., Chen, C., & Chen, H. (2022). Collaborative Graph Learning for Session-based Recommendation. ACM Transactions on Information Systems (TOIS), 40(4), 1-26. | TOIS | 2022 | NA |
CAGE | Sheu, H. S., & Li, S. (2020, September). Context-aware graph embedding for session-based news recommendation. In Fourteenth ACM conference on recommender systems (pp. 657-662). | RecSys | 2020 | NA |
A-PGNN | Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., & Wang, L. (2020). Personalized graph neural networks with attention mechanism for session-aware recommendation. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2020 | Python |
DGTN | Zheng, Y., Liu, S., Li, Z., & Wu, S. (2020, November). DGTN: Dual-channel Graph Transition Network for Session-based Recommendation. In 2020 International Conference on Data Mining Workshops (ICDMW) (pp. 236-242). IEEE. | ICDMW | 2020 | Python |
FGNN | Qiu, R., Li, J., Huang, Z., & Yin, H. (2019, November). Rethinking the item order in session-based recommendation with graph neural networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 579-588). | CIKM | 2019 | Python |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
BGCN | Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Bundle recommendation with graph convolutional networks. In Proceedings of the 43rd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 1673-1676). | SIGIR | 2020 | Python |
HFGN | Li, X., Wang, X., He, X., Chen, L., Xiao, J., & Chua, T. S. (2020, July). Hierarchical fashion graph network for personalized outfit recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 159-168). | SIGIR | 2020 | Python |
BundleNet | Deng, Q., Wang, K., Zhao, M., Zou, Z., Wu, R., Tao, J., . & Chen, L. (2020, October). Personalized Bundle Recommendation in Online Games. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2381-2388). | CIKM | 2020 | NA |
DPR | Zheng, Z., Wang, C., Xu, T., Shen, D., Qin, P., Huai, B., . & Chen, E. (2021, April). Drug Package Recommendation via Interaction-aware Graph Induction. In Proceedings of the Web Conference 2021 (pp. 1284-1295). | WWW | 2021 | NA |
DPG | Zheng, Z., Wang, C., Xu, T., Shen, D., Qin, P., Zhao, X., . & Chen, E. (2022). Interaction-aware Drug Package Recommendation via Policy Gradient. ACM Transactions on Information Systems (TOIS). | TOIS | 2022 | NA |
MIDGN | Zhao, S., Wei, W., Zou, D., & Mao, X. (2022). Multi-view intent disentangle graph networks for bundle recommendation. arXiv preprint arXiv:2202.11425. | AAAI | 2022 | Python |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
PPGN | Zhao, C., Li, C., & Fu, C. (2019, November). Cross-domain recommendation via preference propagation graphnet. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 2165-2168). | CIKM | 2019 | Python |
BiTGCF | Liu, M., Li, J., Li, G., & Pan, P. (2020, October). Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 885-894). | CIKM | 2020 | Python |
DAN | Wang, B., Zhang, C., Zhang, H., Lyu, X., & Tang, Z. (2020, October). Dual Autoencoder Network with Swap Reconstruction for Cold-Start Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2249-2252). | CIKM | 2020 | NA |
HeroGRAPH | Cui, Q., Wei, T., Zhang, Y., & Zhang, Q. (2020). HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation. In ORSUM@ RecSys. | RecSys | 2020 | Python |
DAGCN | Guo, L., Tang, L., Chen, T., Zhu, L., Nguyen, Q. V. H., & Yin, H. (2021). DA-GCN: A Domain-aware Attentive Graph Convolution Network for Shared-account Cross-domain Sequential Recommendation. arXiv preprint arXiv:2105.03300. | IJCAI | 2021 | NA |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
MBGCN | Jin, B., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Multi-behavior recommendation with graph convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 659-668). | SIGIR | 2020 | Python |
MGNN-SPred | Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). | WWW | 2020 | Python |
MGNN | Zhang, W., Mao, J., Cao, Y., & Xu, C. (2020, October). Multiplex Graph Neural Networks for Multi-behavior Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2313-2316). | CIKM | 2020 | NA |
LP-MRGNN | Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2021). Incorporating Link Prediction into Multi-Relational Item Graph Modeling for Session-based Recommendation. IEEE Transactions on Knowledge and Data Engineering. | TKDE | 2021 | NA |
GNMR | Xia, L., Huang, C., Xu, Y., Dai, P., Lu, M., & Bo, L. (2021, April). Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1931-1936). IEEE. | ICDE | 2021 | Python |
MB-GMN | Xia, L., Xu, Y., Huang, C., Dai, P., & Bo, L. (2021, July). Graph meta network for multi-behavior recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 757-766). | SIGIR | 2021 | Python |
KHGT | Xia, L., Huang, C., Xu, Y., Dai, P., Zhang, X., Yang, H., . & Bo, L. (2021, May). Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 4486-4493). | AAAI | 2021 | Python |
GHCF | Chen, C., Ma, W., Zhang, M., Wang, Z., He, X., Wang, C., . & Ma, S. (2021, May). Graph Heterogeneous Multi-Relational Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 3958-3966). | AAAI | 2021 | Python |
DMBGN | Xiao, F., Li, L., Xu, W., Zhao, J., Yang, X., Lang, J., & Wang, H. (2021). DMBGN: Deep Multi-Behavior Graph Networks for Voucher Redemption Rate Prediction. arXiv preprint arXiv:2106.03356. | KDD | 2021 | Python |
HMG-CR | Yang, H., Chen, H., Li, L., Yu, P. S., & Xu, G. (2021). Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation. arXiv preprint arXiv:2109.02859. | ICDM | 2021 | Python |
GNNH | Yu, B., Zhang, R., Chen, W., & Fang, J. (2021). Graph neural network based model for multi-behavior session-based recommendation. GeoInformatica, 1-19. | GeoInformatica | 2021 | NA |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
V2HT | Li, M., Gan, T., Liu, M., Cheng, Z., Yin, J., & Nie, L. (2019, November). Long-tail hashtag recommendation for micro-videos with graph convolutional network. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 509-518). | CIKM | 2019 | NA |
BGCF | Sun, J., Guo, W., Zhang, D., Zhang, Y., Regol, F., Hu, Y., . & Coates, M. (2020, August). A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2030-2039). | KDD | 2020 | Python |
DGCN | Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y. (2021, April). DGCN: Diversified Recommendation with Graph Convolutional Networks. In Proceedings of the Web Conference 2021 (pp. 401-412). | WWW | 2021 | Python |
FH-HAT | Xie, R., Liu, Q., Liu, S., Zhang, Z., Cui, P., Zhang, B., & Lin, L. (2021). Improving Accuracy and Diversity in Matching of Recommendation with Diversified Preference Network. arXiv preprint arXiv:2102.03787. | TBD | 2021 | NA |
Isufi et al. | Isufi, E., Pocchiari, M., & Hanjalic, A. (2021). Accuracy-diversity trade-off in recommender systems via graph convolutions. Information Processing & Management, 58(2), 102459. | IPM | 2021 | Python |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
RippleNet | Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., & Guo, M. (2018, October). Ripplenet: Propagating user preferences on the knowledge graph for recommender systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 417-426). | CIKM | 2018 | Python |
EIUM | Huang, X., Fang, Q., Qian, S., Sang, J., Li, Y., & Xu, C. (2019, October). Explainable interaction-driven user modeling over knowledge graph for sequential recommendation. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 548-556). | MM | 2019 | NA |
KPRN | Wang, X., Wang, D., Xu, C., He, X., Cao, Y., & Chua, T. S. (2019, July). Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 5329-5336). | AAAI | 2019 | Python |
RuleRec | Ma, W., Zhang, M., Cao, Y., Jin, W., Wang, C., Liu, Y., . & Ren, X. (2019, May). Jointly learning explainable rules for recommendation with knowledge graph. In The World Wide Web Conference (pp. 1210-1221). | WWW | 2019 | Python |
PGPR | Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., & Zhang, Y. (2019, July). Reinforcement knowledge graph reasoning for explainable recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 285-294). | SIGIR | 2019 | Python |
KGAT | Wang, X., He, X., Cao, Y., Liu, M., & Chua, T. S. (2019, July). Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 950-958). | KDD | 2019 | Python |
TMER | Chen, H., Li, Y., Sun, X., Xu, G., & Yin, H. (2021, March). Temporal meta-path guided explainable recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 1056-1064). | WSDM | 2021 | Python |
ECFKG | Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. | ICML | 2019 | Python |
HAGERec | Yang, Z., & Dong, S. (2020). HAGERec: hierarchical attention graph convolutional network incorporating knowledge graph for explainable recommendation. Knowledge-Based Systems, 204, 106194. | KBS | 2020 | NA |
Name | Paper | Venue | Year | Code |
---|---|---|---|---|
FairGo | Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., & Wang, M. (2021, April). Learning Fair Representations for Recommendation: A Graph-based Perspective. In Proceedings of the Web Conference 2021 (pp. 2198-2208). | WWW | 2021 | Python |
FairGNN | Dai, E., & Wang, S. (2021, March). Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 680-688). | WSDM | 2021 | Python |
Fairwalk | Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards fair graph embedding. | IJCAI | 2019 | Python |
CFCGE | Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. | ICML | 2019 | Python |
An index of recommendation algorithms that are based on Graph Neural Networks. (TORS)